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Introduction 
The goal of this exercise has been to create a program or system that would represent a reasonably accurate 
model of a racing car travelling around an arbitrary circuit. This would allow experimentation to take place 
with a variety of factors that are likely to affect the performance. 
 
The work carried out thus far has concentrated on building a simple model that can produce a lap time 
based upon a number factors, including: 
 

a) a set of XY co-ordinates for the circuit 
b) the power output of the car’s engine 
c) the weight of the car 
d) the coefficient of friction of the tyres 
e) the frontal area and Cd of the vehicle 

 
A number of assumptions have been made thus far that are likely to affect the outcome, to a greater or 
lesser degree: 
 

a) The coefficient of friction of the tyre remains constant at all times 
 
- in practice, this tails off as the load placed on the tyre increases, and hence brings into play 
the design of the suspension in terms of the effects of weight transfer, and the possible 
benefits of adding downforce. 
 

b) The sample points on the circuit are close enough together to calculate the car’s performance 
statically at each point. Acceleration between sample points is taken to be constant. 
 

c) The driver is capable of getting the maximum performance from the tyres during braking and 
cornering (or is able to achieve a fixed percentage of the maximum possible forces). 
 

d) The circuit is completely flat – no hills or dips are present.  
 
– in practice the presence of hills will affect the ability of the car to brake and accelerate, as 
well as the grip available from the tyres for cornering. 
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The Circuit 
 
In order to produce a lap time, first we need a circuit. As a starting point, a model has been created for a 
generic circuit, somewhat similar to Mallory Park in Leicestershire. It is anticipated that at some future 
point, real circuit data will be available either from on-car telemetry systems, or possibly from computer 
game simulations of circuits, such as the popular F1GP, for which track editors are available. 
 
The circuit is assumed to be completely flat, in order to make for simpler calculations. It is possible that Z 
data could be incorporated at a later date, however most current racing car data logging systems which can 
provide track maps only work in two dimensions (X and Y). 
 

Generic Mallory-type circuit
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From the starting point at the entry to the main corner (Gerards), the 2.04km circuit is arranged as follows: 
 
Sector Length (m) Radius (m) Arc 
Turn 1 (Gerards) 556 160 199° 
Back straight (Revett) 420 - - 
Turn 2 (Esses) 96 100 55° 
Straight to hairpin 260 - - 
Turn 3 (Shaws Hairpin) 114 40 164° 
Straight from hairpin 171 - - 
Turn 4 (Devils Elbow) 93 100 53° 
Start/Finish straight 332 - - 
 
Compared with the real Mallory Park, the Esses here are a single corner rather than an S-shaped one, and 
the hairpin is probably too large a radius. In addition, all the corners have a constant radius. A racing driver 
would make all efforts to increase the radius of a corner at entry and exit, to increase speed when possible.  
 
It is important to remember when modelling new circuits that the XY co-ordinates to be used should 
describe the path taken by the car, the racing line, rather than the centre line of the paved tarmac area. 
 

Page 4 of 4 



The XY co-ordinates are given in metres, relative to the origin in the centre of turn 1, as can be seen from 
the track map above. The co-ordinates occur at intervals of approximately 5m along the circuit, however 
consistent spacing between points is not critical since the length of each sector is calculated individually. 
 

Description of sectors 
 
The circuit is split up into many individual sectors – around 400 in the case of our generic circuit, each 
sector is around 5m in length. 
 
For each sector, we want to be able to calculate the exit speed at the end of the sector, and the time taken to 
traverse the sector. Clearly we want to maximise speed at all points, within the limits of the car, in order to 
minimise the time taken. 
 

exit speedentry speed

sector length

acceleration

 
If the car is accelerating from rest, we can take account of the available grip from the tyres, the engine 
power and aerodynamic drag and calculate the acceleration possible at the start of each new sector. From 
this, we can then calculate the exit speed at the end of the sector, given the length of the sector and the 
assumption that the acceleration is constant. 
 
We take a sector to be the length of track following a particular point. 
 
If we take two points (Xn,Yn) and (Xn+1,Yn+1), then the distance between them – the length of sector n – can 
be determined as follows: 

(Xn+1,Yn+1) 

Sector length = √(Xn+1 - Xn)2 + (Yn+1 - Yn)2 

(Xn,Yn) 

Yn+1 - Yn 

Xn+1 - Xn 

 
The angle A from the horizontal can be found by: 
 

tan A = (Yn+1 - Yn) / (Xn+1 - Xn) 
 
 
We need to model some complex behaviour, where the car accelerates from rest, brakes to the entry point 
of a corner, negotiates the corner at the maximum possible speed, and accelerates again at the exit of the 
corner. We will get on to the details of the calculations shortly, but first we need to look at how we can 
determine corner radius from the sequence of XY co-ordinates, since this will determine our maximum 
speed around the corner for a given car. 
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Calculations 

Calculating corner radius 
 
Given three XY co-ordinates, it is possible to determine the radius of the circle that passes through all of 
the points – the effective corner radius at that point. The points do not even need to be evenly spaced on the 
curve. 

Having drawn three points A, B, C on a circle whose centre is at O, we know from a circle theorem that the 
exterior angle BOC is twice the interior angle A (BAC).  

a 

b 

c A

P

½ a 

C
A

B 

O

R

R

 
“The angle which an arc of a circle subtends at the centre of a circle is twice that subtended by the arc at 
any other point on the circumference of the circle.” 
 
In triangle BOC, we know that the two radial sides are of equal length, and thus we can split this isosceles 
triangle into two right angle triangles. Angle P will be half the interior angle BOC: 
 

P = (360 – 2A) / 2 = 180 - A 
 
We then determine the radius R using trigonometry: 
 

sin P = ½ a / R 
 

R = a / (2 sin P) 
   = a / (2 sin (180 – A)) 

 
The angle A can be found using the cosine rule: 
 

cos A = (b2 + c2 – a2) / 2bc 
 
The distances a, b and c can be found easily from the XY co-ordinates for points A, B and C. 
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We will use this method to calculate the effective radius at point A (start point of current sector), taking 
point B from the start point of the previous sector, and point C from the start point of the next sector. 
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Corner entry and exit transition 
 
The diagram below shows a set of co-ordinates that describe a path around a 90° bend of radius R, with a 
straight before and after. 
 
Since we have created the example, it is possible to write onto the diagram the actual corner radius for each 
sector, beside each start point. We will be calculating the effective corner radius for a particular sector by 
using three points – the start point of the sector, the end point of the sector (next sector start point), and the 
start point of the previous sector. This has some effects at the start and end of corners that need to be 
understood. 

Actual radius 

∞

>R 

R 

R 

R
>R∞N/A ∞

R

R 

R
R

∞

∞

∞∞ ∞

Calculated radius 

 
 

a) The first sector of the corner will be of a larger radius than the actual radius of the corner. 
 

b) The first sector of the following straight will not be infinity, as would be expected, but have be a 
radius  larger than the actual corner radius. 

 
We could change the three points which are used to calculated the effective corner radius for a sector, but 
we will always get these effects on the transition between corner and straight, but in different places. 
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Maximum corner speed 
 It is useful for us to be able to calculate the fastest speed the car could travel though a particular sector of a 
known radius. We can then determine the braking effort required for the corner, and detect when the driver 
should balance the car on the throttle at the maximum corner speed. 
 
We will assume that each sector is of a constant radius, and at the maximum ‘limiting’ speed, the speed will 
remain constant through the corner. 
 
The maximum speed will be determined by the ability of the tyres to turn the car through the corner and 
simultaneously push it forward through the air against drag to maintain a constant speed. 
 
The maximum force that can be transmitted through the tyre without slippage is given by: 
 
 F = µ R 
 
Where µ is the coefficient of friction of the tyre, and R is the ‘normal force’ acting on the tyre. Note that he 
area of the tyre’s contact patch is not part of the equation. We can therefore keep life simple by modelling 
the car as having only one tyre. 
 
At rest, the normal force will be equal to the weight of the car (mass x gravity). At speed the normal force 
will be affected by the aerodynamics of the car – if it produces downforce, this will lead to the normal force 
being larger, and if it generates lift at speed (a bad thing), then the normal force will be reduced. 
 
Carroll Smith describes in his book Tune to Win how the coefficient of friction changes with tyre slip angle, 
and tails off as the normal force is increased. For the time being, we will assume that the coefficient of 
friction remains constant, and will ignore the effects of suspension geometry and weight transfer between 
the corners that will affect the normal force on each tyre. 
 
The forces that must be transmitted through the tyre as it travels around the corner are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
When the car is cornering at the m
can be transmitted through the tyr
 

 Thrust to produce centripetal force
given corner rad

Fd  
Thrust to overcome aerodynamic drag 
and maintain constant speed 

 
We will use a coefficient of frictio
Car Downforce. 
Fc
 for
ius
aximum sp
es: 

Ft 

n for a raci
Ft 
Total force
eed, the total force Ft will be equal to the maximum force that 

= √Fc2 + Fd2 = µ R 

ng tyre of µ = 1.4, quoted from Tune to Win and Competition 
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Aerodynamic drag 
The aerodynamic drag force is determined by: 
 

a) The coefficient of drag of the car (Cd) 
b) The frontal area of the car A (Note Cd for whole car is relative to frontal area) 
c) The density of air, ρ (1.19 kg/m3) 
d) The square of the velocity, v2 

 
Fd = Cd x ½ρv2 x A 

 
Allan Staniforth’s book Race and Rally Car Source Book contains a table of Cd figures for a variety of 
cars, and includes figures for an unnamed Formula Ford 1600. Adjusted for m2: 
 

Cd Frontal area m2 Note 
0.525 1.6 x 0.91 = 1.46 Max X x Max Y dimension 
0.71 1.11 Outline area 

 
The two numbers appear to reflect the different drag coefficients that need to be used depending on how the 
frontal area is measured, since very similar results are produced by multiplying these values for Cd and 
area. 
 
Using the formula above will give us a drag figure for a car without wings. Clearly if we choose to add 
wings, the drag produced by these will need to be added to the total drag force, based on the wing’s Cd and 
plan area. (Values of Cd for wings are normally quoted relative to the plan area). 

Centripetal force 
This is the force required to keep the car turning rather than travelling straight ahead. It is given by: 
 

Fc = (mv2)/r 
 

Where m is the mass, v is the velocity and r the radius of the circle. 

Combined force 
We can now put the two together and say: 
 
 Ft2  = (Fc2 + Fd2 ) 
  = (m2v4/r2) + (1/4ρ2v4A2Cd2) 
  = v4((m2/r2) + (1/4ρ2A2Cd2)) 

Equation for maximum velocity 
If we combine with the limiting friction equation, we can solve for the velocity v: 
 

(µR) 2 = v4((m2/r2) + (1/4ρ2A2Cd2)) 
 
v4 = (µR) 2 / ((m2/r2) + (1/4ρ2A2Cd2)) 
 
v = 4√(µR) 2 / ((m/r)2 + (1/2ρACd)2) 
 

This equation tells us the maximum speed the car can go round a given radius curve. The maths would 
however be further complicated if the car had some downforce, since the normal force R would depend on 
the square of velocity v.  
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Acceleration from rest 
The power/torque of the engine, drive train efficiency, the mass of the vehicle, the tyre coefficient of 
friction and the aerodynamic drag will determine the car’s acceleration from rest and ultimate top speed in 
a straight line.  
 
The accelerative force produced by the engine can be determined from the engine power output and the 
speed. The useful power at the wheels will be the engine power at the crankshaft reduced by the drive train 
efficiency. 
 
 Force = Power x Velocity 
 
 The bhp figure can easily be converted to a useful figure in Watts. 
 

Useful power P in Watts = 7457 x Brake Horsepower x Drive Train efficiency 
 
A typical figure for drive train efficiency in a Formula Ford car might be 91% (Competition Car 
Downforce). 
 
Aerodynamic drag will be as before, Fd = Cd x ½ρv2 x A 
 
The total accelerative force at velocity v will therefore be: 
 
 Fa = (P/v) – ½ρv2ACd 
 
Since the force will be zero when the car is at rest (effectively the engine is not turning), we need to fudge 
the operation of the clutch by starting the car at some speed slightly greater than zero. 
 
We could alternatively calculate the force by using a torque figure for the engine, along with the drive train 
gearing ratio, and the effective radius of the driving wheels. Effective radius will be the rolling 
circumference divided by 2Π. 
 
Acceleration can be calculated using the equation below, where m is the mass of the object, and F the force 
acting upon it. 
 
  a = F/m 
 
Given current velocity u and acceleration a, the equation below will provide the velocity v after distance s 
has been travelled: 
 
  v2 = u2 + 2as 
 
We can combine these equations to allow us to calculate the speed of the car at the end of a sector of length 
s, given an entry speed u for the sector: 
 
  a = ((P/u) – ½ρu2Acd)/m 
 
  v2 = u2 + 2s((P/u) – ½ρu2Acd)/m 
 
  v = √ u2 + 2s((P/u) – ½ρu2Acd)/m 
 
Note that we have used the entry speed u to calculate the maximum accelerative force available on entry to 
the sector (it was referred to as v in the previous equations). 
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Engine Power 
If we have a plot of engine power against revs, and we know the effective radius of the driving wheels, 
final drive and gear ratios of the car in question we can select the gear that the car should be in at any 
particular speed. This would enable us to determine a plot of the power output for that speed.   

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

0 2000 4000 6000 8000
rpm

bh
p

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

0.0 50.0 100.0 150.0

mph
bh

p
 
Again, this method could also be used given the torque curve of the engine. It is difficult to model the 
effect of gear change time using this method. When the engine is not accelerating the car, the car will slow 
down the revs will drop, and oscillation can occur on upshifts unless some hysteresis is introduced. 
 
We can use this technique at any point to determine the available power from the engine based on u, the 
entry speed to the sector. 
 
An alternative technique might be to model the driver’s behaviour. The driver starts off from rest in 1st 
gear, then when the ‘shift-up’ light comes on, selects the next gear. When the revs drop past a certain point, 
due to braking, then a lower gear is selected. In addition to the data required above, this method requires an 
‘upshift point’ and a ‘downshift point’ to be selected. The power available can then be determined from the 
revs of the engine at any point. 
 
We currently model the time taken for the driver to change gear using the second method. When a gearshift 
occurs, the available power is reduced to zero for all or part of the current and subsequent sectors until the 
specified gearshift time has elapsed. This provides some hysteresis to avoid the problem with the first 
method described above, where the drag-related drop in speed due to the interruption in power output 
would cause a lower gear to be selected, and a vicious circle ensues.  
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Combining Acceleration and Corners 
 
We now an equation we can apply to curved sectors to tell us the maximum speed a car could negotiate the 
corner based on the limiting grip of the tyres, and an equation we can apply to a straight sector to tell us the 
exit speed from the sector. We don’t have an equation that could tell us the exit speed of a sector when we 
the car is accelerating and travelling though a corner. It is necessary to know when the driver would have to 
lift off the throttle to control how much tyre grip is used for acceleration, and how much for cornering. 
 
We also don’t have an answer for how braking will take place, but we will deal with this later. 
 
Consider the corner example introduced earlier and 
assume that the car arrives at the corner at just less 
than the maximum corner speed. The driver will not 
have to brake, but at some point in the corner will 
have to balance the car with the throttle. When the 
maximum frictional force from the tyres is reached, 
the accelerative force from the engine will need to be 
reduced to allow the tyres to generate the centripetal 
force required to turn the corner. If the driver does 
not lift off the throttle, then the car will not go 
around the corner. This is generally a bad thing. 

Full acceleration

Balance 
throttle 

Resume 
acceleration 

We can use the diagram below to visualise the forces 
being transmitted by the tyre. The radius of the circle 
is the maximum frictional force µR.  
 
While accelerating in a straight line, the force produced by the engine (longitudinal acceleration) will often 
be less than the maximum frictional force. Exceptions to this might be a grid start, or a Formula One car 
running on cold tyres. It should therefore be possible to negotiate a corner whilst still accelerating.  

 

Radius is the maximum 
frictional force from tyre 

Turning right, holding 
speed  (resisting drag)

Turning right, 
accelerating 

Straight line 
acceleration 

As the speed increases, the centripetal force 
(lateral acceleration) increases, and there will 
come a point where the result of the two 
perpendicular forces equals the maximum 
frictional force. We are now at the limit of the 
tyre’s grip. 
 Turning right, drag 

reduces speed  As the speed increases still further, the 
accelerative force will have to be reduced to 
ensure that the total force remains equal to the 
maximum frictional force. We are balancing 
the car on the throttle. 
 

Given a constant radius corner, the speed can be increased in this way until the point is reached where the 
drag force is equal to the accelerative force from the engine. 
 
As an aside, the only way to get a larger centripetal force to turn in a smaller radius would be to gently 
reduce the engine power – which would result in the car being slowed down by the drag. We could not 
apply the brakes since this would introduce a longitudinal force, and coming suddenly off the throttle 
would have a similar effect due to ‘engine braking’. 
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Putting it all together 
 
Currently, we have equations for the ‘straight line acceleration’ and ‘turning right, holding speed’ 
conditions on the previous diagram. We need to have a method to calculate how much of the force 
available to accelerate the car can be transmitted through the tyres, in order that we can calculate the speed 
at the end of any track sector, curved or not. 
 
It seems that the only way to do this will be to determine if the accelerative force from the engine needs to 
be limited. This condition will only occur when the total forces on the tyre are equal to the maximum 
frictional force – whether during low speed acceleration, or during high speed cornering. 
 
The diagram above shows a graph of the combined longitudinal and lateral (engine and centripetal) forces 
acting on a car at different speeds in a corner with a radius of 160m. 
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At slow speed, the available force from the engine would exceed the maximum frictional force and cause 
wheelspin if all the power was applied. At higher speed, it can be seen that the centripetal force becomes 
the dominating factor. The maximum speed is reached when the combined force is equal to the maximum 
frictional force. We can also see from the diagram that the maximum straight-line speed would be reached 
when the drag force becomes equal to the accelerative force from the engine. 
 
For the range of speeds in between, the ability of the car to accelerate is unaffected by the cornering forces, 
and hence we can use the straight-line acceleration equation to calculate the exit speed from the sector. The 
only proviso might be that we should calculate the distance travelled as the arc between the two points 
rather than the straight-line distance. 

Slow speed wheelspin 
Currently, we model traction control by limiting the longitudinal acceleration force from the engine to the 
maximum frictional force. This could potentially cause incorrect results for modelling acceleration from 
slow corners with increasing radius, but this is not thought to be significant. If it does prove to be 
significant, then the amount of centripetal force required at the same time will need to be taken into 
account. 
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Transition to cornering 
 
Modelling the transition from accelerating to cornering on the limit is fairly straightforward. The  diagram 
below shows a car accelerating through a constant radius corner until it reaches the maximum corner speed. 
 

Speed 

Maximum corner speed 

Distance 
In reality, the driver would continue to accelerate until the maximum corner speed was reached, then hold 
that speed. As our track is split up into sectors, we can model this as shown in the diagram, where the exit 
speed is simply set to the maximum corner speed. The average acceleration will be the same regardless of 
how we model the transition, since the entry and exit speeds will be fixed. 
 
We can use the flow diagram below to select the correct exit speed. 
 
The acceleration through the sector, the elapsed time and the amount of power consumed can all be 
calculated if the entry and exit speeds for the sector are known. 
 
 

No 

Set exit speed to maximum 
corner speed. 

Yes

Calculate exit speed based on 
straight-line acceleration 

equation.

Is exit speed 
greater than max 

corner speed?
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Braking 
 
After accelerating down a straight on the racetrack, sooner or later, the car is going to come to a corner. If 
the corner is tight enough, the driver will need to slow the car down in order to get around the corner. The 
speed of the car will need to be reduced to the maximum corner speed by the time that the car arrives at the 
corner. This requires an element of forward planning that we have not considered so far. 

Maximum corner speed 

Holding speed in corner Braking

Accelerating 

Speed 

Distance 

 
The initial calculation of maximum corner speed and forward acceleration can be done by progressing 
forwards through each sector in turn, feeding the exit velocity from one sector into the entry velocity of the 
next. To calculate the best possible braking performance, we will first calculate the acceleration from rest 
and maximum corner speeds, then apply the braking forces on a second pass, this time going backwards 
through the sectors. 
 
For the first pass, it will be clear that we will have to slow down for corners in some way or other. The 
simplest way to do this seems to be as follows. When considering a new sector, the entry speed is compared 
against the maximum corner speed for the sector. If the entry speed is higher, then the car would have 
needed to brake to this point. We reset the corner entry to a reasonable value – the maximum corner speed.  
 
On the second pass, we can go backwards through the sectors and compare the entry speed for sector N+1 
with exit speed for sector X. If they are different, then we will need to apply the brakes retrospectively 
during sector X. We take the entry speed for sector N+1 as the desired exit speed of sector N, and calculate 
the maximum speed from which it would be possible to decelerate under the cornering conditions for sector 
N. Since we are going backwards through the data, this may be thought of as acceleration. If this newly 
calculated entry speed for sector N is less than the existing corner entry speed, then we will use it, and will 
need to continue the braking during sector N-1. If the newly calculated entry speed is greater than the 
existing corner entry speed, then we will keep the existing corner entry speed and keep the new exit speed – 
this will have been the first sector where braking is required. 
 
Either way, it will be necessary to determine how much braking force can be applied. This force will be 
what is left over from the maximum frictional force generated by the tyre after the centripetal force 
required to get around the corner is taken into account. 
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Force available for braking 
The force available for braking (Fb) from the tyres at any point can be calculated as follows, if the total 
frictional force Ft and the centripetal force Fc are known. 
 
 Ft2 = Fc2 + Fb2 
 
 Fb2 = Ft2 - Fc2 
 
 Fb = √ Ft2 - Fc2 
 
We know that the maximum frictional force Ft = µR 
 
 Fb = √ µ2R2 - Fc2 
 
We have a more complicated equation to consider for the centripetal force Fc, since this component is itself 
dependent on velocity. We need then either to attempt to consider the change of velocity during the sector, 
or opt for a less accurate method where a fixed speed is chosen from either the entry or exit speed. The 
simplest method will be to use the exit speed from the sector as this is known. This will mean that the 
centripetal force will be slightly under-estimated – as the exit speed is lower than the entry speed – but this 
is not thought likely to be a significant error. 
 
The centripetal force for the exit speed will be Fc = mv2/r 
 
 
 Fb = √ µ2R2 – (mv2/r)2 
 
 Fb = √ µ2R2 – m2v4/r2 
 
Another factor contributing to the deceleration of the car will be the drag. This acts on the body and not the 
tyres, so it is in addition to any deceleration from the tyres. Again, we will use the drag at the exit speed of 
the sector – which will be a slight underestimation. You will recall that the drag force Fd can be calculated 
with this equation. 
 
 Fd = Cd x ½ρv2 x A 
 
The total decelerative force Fs will therefore be 
 
 Fs = Fd + Fb 
 
 Fs = ½ρv2ACd  + √ µ2R2 – m2v4/r2 
 
 
The deceleration from this force will be -a = -Fs/m 
 
Thus the maximum entry speed u from which we could have braked would be: 
 
 u2 = v2 – 2as 
 
 u2 = v2 - 2(-Fs/m)s 
 
 u = √ v2 + 2sFs/m 
  
 

Page 17 of 17 



Flow diagram for braking 
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Derived information 
When a model has been built which can model acceleration from rest, gear changes, braking and cornering, 
it should be possible to obtain a useful piece of data – the lap time. It will also be possible to generate 
graphs of the car behaviour that can be compared with real data from telemetry systems. 
 
A typical data logging system would allow the following parameters to be displayed, against distance or 
time: 
 

• Longitudinal acceleration – relative to G 
• Lateral acceleration – relative to G 
• Engine RPM 
• Wheel speed 
• Gear 
• Throttle position 
• Steering angle 

 

Displaying telemetry data 
We can attempt to replicate the output of a data logging system, in order that results from the computer 
model and real results can be compared. 
 

Parameter How is it calculated? Equation 
Elapsed time From average speed through the 

current sector and the sector 
length, plus the sum of all 
previous sector elapsed times. 

 

Distance travelled From the sum of all previous 
sector lengths. 

 

Longitudinal acceleration From the difference in entry and 
exit speeds, and the sector length. 

 

Lateral acceleration By using the average sector speed 
in the centripetal acceleration 
equation. 

 

Engine RPM and gear Both are already calculated in 
order to get the engine power 
output. 

 

Wheel speed Exit speed for each sector is used, 
scaled to give an MPH figure 
rather than ms-1. 

 

Throttle position Power required to accelerate the 
car and overcome drag, as a 
percentage of the available engine 
power. Shown as zero during 
braking. 

 

Steering Angle Taken from 180-A (where A is 
the angle between two sectors). 
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Output from Model 
The graph below shows output from the model, based on the following inputs: 
 

Item Value Note 
Track Generic Mallory circuit  
Mass of car + driver 437 + 75 = 512 kg Based on Royale RP31M FF1600 
Gear change time 0.3s Target from ‘Data Power’ 
Frontal Area 1.54m2 From ‘Race and Rally Car Sourcebook’ 
Cd 0.525 From ‘Race and Rally Car Sourcebook’ 
Tyre µ 1.4 From ‘Tune to Win’ and ‘Competition Car Downforce’ 
Power output Max 124 BHP Graph data from Dyno run of 1600cc Ford Cross-flow 

Mono-Kent engine. Gears from Royale’s Hewland Mk.9 
Transmission 
efficiency 

91% From ‘Competition Car Downforce’ 

Density of air, ρ 1.23 kg/m3 From ‘Data and Formulae’ 
 
The model has been built up using Microsoft Excel – it might perhaps be useful eventually to create a 
model written in C, but the facilities for graph plotting and simple equation editing in Excel make this a 
good choice for the time being. 
 

 
It is something of a pain to input the co-ordinates for the track data – and to potentially switch between data 
for different circuits. It’s also not possible to run the model with different inputs automatically and create 
plots of lap time against mass, for example. This would be a good reason to re-create the model in C, to 
allow circuit data from a data logging system to be input directly into the model. 
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Generic Mallory Park type circuit 
 
The circuit being used in this case is a very simple model, with straight straights and constant radius 
corners: 

Generic Mallory-type circuit

-200.0

-150.0

-100.0

-50.0

0.0

50.0

100.0

150.0

200.0

-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0

Back straight Up to hairpin From hairpin Start/Finish straight
Turn 1 (Gerards) Turn 2 (Esses) Turn 3 (Hairpin) Turn 4 (Elbow)

 
A simple plot of the data from the model against distance travelled is shown below: 

 

0.0

50.0

100.0

MPH
Gear 150
Revs

Start/finish straight: 
Full throttle, 
Note how acceleration 
decreases with speed.

Devils Elbow: 
High lateral G, 
Minor braking 
required beforehand, 
Part throttle. 

Hairpin: 
Small throttle opening, 
High lateral G 

Back straight: 
Full throttle, 
Straight line. 

Gerards: 
High lateral G, 
Part throttle,  
Constant speed. 

Braking for Esses:
High –ve long G, 
No throttle. 

Long G
Lat G
Throttle

-150.0

-100.0

-50.0

0 500 1000 1500 2000

 
We can see that the driver is making the best use of the tyres in this example under both cornering and 
braking. As this simple track has constant radius corners, the lateral G loading and throttle opening are 
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constant throughout the corners – since the maximum corner speed remains constant. There are no corners 
where braking is required whilst cornering in this case – all braking is done in a straight line. The hairpin 
appears to be the only corner where downshifting is required.  
 
For the above example, the following results were also obtained: 
 

Item Value 
Lap time 49.5s 
Max Speed 118 mph 
Min Speed 52.3 mph 

 
 

Silverstone National Circuit 
 
Now that we have a model that appears to create useful results, we can attempt to use it with some real 
track data. It has been possible to obtain the XY co-ordinates for the Silverstone National circuit, circa 
1993 from a demonstration version of the PI Club Expert data logging system. The map data is stored in a 
form that made it very easy to reverse engineer. This demonstration system also provides real data for a car 
travelling around the circuit that we can use to compare against the model. 
 
The map is created from the speed and lateral G recorded by the car as it travels around the circuit. It is the 
actual path travelled by the car around the circuit – the racing line.  
 

 

Woodcote 

Luffield 1 & 2 

Brooklands 

Club Straight

Becketts 

Maggots 

Copse 

 
The circuit data from Silverstone contains corners whose radius reduces up to the apex, then increases as 
the driver tries to take the best line on the available track. It also contains corners where braking is required 
as the car is turning a corner (between Brooklands and Luffield 1). 
 
It has proved necessary to smooth the track data to some extent – although the coordinates are good enough 
to produce a smooth looking map, the calculations in the model produce the corner radius numbers which 
have a lot of noise. For this reason, the calculated radius at any point is averaged with the points before and 
after – a very simple way to clean up the data. 
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The plot below shows data from the model. It is in a slightly different form to the previous graph – this has 
been done to match the format of the data printed from the PI analysis software. 

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

MPH Gear Revs Long G Lat G Throttle Steering Soft Sectors

Woodcote

Luffield 2
Luffield 1

BrooklandsClub StraightBeckettsMaggots Copse 

 
It should be noted that the lateral G and steering graphs only go in one direction, since the model cannot 
currently distinguish between left-hand and right-hand corners! This would only be a problem if we wanted 
to directly compare the results with real car data. 
 
Also note that although the ‘Gear’ and ‘Revs’ lines are shown on the key, the actual traces has been omitted 
for reasons of clarity. The vertical yellow lines are used to show different sectors of the track – the start and 
end of corners can be set up on the software. This is useful since we can see where particular activity takes 
place relative to the start or end of corners. 
 
There is a huge amount of useful information to be had from this kind of data logging trace – but it does 
require a good deal of looking to extract meaning from the graphs. In order to see if the model is working 
correctly, we can go through the traces corner by corner to see what is happening. 
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Silverstone – Copse 

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

0 200 400 600 0 2400 2600

MPH Gear Revs Long G Lat G Throttle Steering Soft Sectors

Apex 

The driver’s steering input increases fairly rapidly – as does the
related lateral G loading. When the apex of the corner is 
reached, the steering input is steadily reduced – the driver is 
‘winding off the lock’. 

Braking is initially very aggressive, and reduces towards the apex of the 
corner. Note how the lateral G and steering input increase as the braking 
force reduces. The model is using all available grip, and reducing braking 
as the need for cornering force increases. In racing driver parlence, this 
technique is called ‘trail braking’. It is more difficult to achieve than the 
normal technique of  completing all braking for the corner before turning 
in with a balanced throttle. 

Speed before braking – 118mph.
After braking – 95mph. 
Note that the yellow line indicates 
the beginning of the corner sector.

Woodcote

Luffield 1
Luffield 2 

BrooklandsClub StraightBeckettsMaggots Copse 

800 1000 1200 1400 1600 1800 2000 220

The throttle graph is particularly interesting. Under braking, there is 
clearly no throttle applied. Just after the initial braking, there is a small 
step up, followed by a big spike. Where has this come from? It would 
seem to be noise on the track data that coincides with the point at which 
the driver of the real car applied full throttle. The radius of the corner at 
this point must increase – leading to a high possible corner speed, and 
consequent throttle application. There is also a brake blip just afterwards.
Full throttle is applied by the model just after the apex of the corner. The 
dip on the throttle after the corner is a gear shift. Note that it coincides 
with a dip in longitudinal G and a small dip in speed – caused by the car’s 
drag slowing it down when the driver is off the throttle. 

 
It would seem from the traces above that the model represents a super-human being! It has the ability to 
completely accurately judge how much grip is available, and trail brake to the apex of corners before 
applying the throttle. It cannot currently look very far forwards, and balance out the small variations in 
corner radius in the recorded data – a real driver would be unlikely to stab at the accelerator and then 
immediately touch the brake in the middle of a corner! Smoothness is usually the order of the day. 
 
In the real datalogging traces, the driver gets most of the braking done before the corner entry point, and 
turns in on a balanced throttle, reducing the brake pressure as the steering input is increased. Full power is 
applied at the apex. The steering trace seems much more straight-ahead than the model – it looks as if the 
car has taken up a slip angle as it goes through the bend somewhat sideways. A note with the real trace 
indicates the traces were taken on a damp day. 
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 Another trace from a demonstration version of Stack’s data logging software for the Silverstone GP circuit 
does have a steering input pattern similar to the one from the model. In addition, there is much less 
understeer and oversteer in the Stack data, perhaps indicating that the weather was better when the data was 
recorded! 

Silverstone – Maggots 
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140.0
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Maggots is a small kink in the circuit 
before Becketts. The model takes the 
bend at full throttle, without any 
reduction in speed. 

As the car increases in speed on the straight from 
Copse to Maggots, the acceleration reduces as the 
aerodynamic drag increases. 

Woodcote 

Luffield 2
Luffield 1

BrooklandsClub StraightBeckettsMaggots Copse 

 
In reality, Maggots presents a challenge for the driver since it is on the brow of a slight hill, and there is a 
large amount of braking to be done before Becketts – which is hidden over the hill. It is very temping to lift 
of the throttle on the entry to Magotts. 
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Silverstone – Becketts 
 
Becketts is a corner with a very tight entry, and a lot of space on the exit. 
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After the apex of the corner, the steering 
input is steadily reduced, leading to a 
corresponding reduction in lateral G loading.

Aggressive initial braking starting just before 
corner sector. Braking pressure reduces as lateral G 
increases. There is then a phase with a very small 
thottle application and high lateral G, where the 
speed continues to decrease to a minimum at the 
apex. The model seems to use all available grip to 
go around the corner, whilst allowing the speed to 
drop. 
After the apex, the thottle is applied, and the 
acceleration from the relatively slow speed results 
in a fairly high longitudinal acceleration. 
As at Copse, dips are present due to gearshifts. 

Speed before braking: 119 mph 
(fastest point on circuit) 
 
Minimum corner speed: 59 mph 

Woodcote

Luffield 1
Luffield 2 

BrooklandsClub StraightBeckettsMaggots Copse 

 
In the real data trace, the driver does most of the braking prior to the corner, and turns in with a balanced 
throttle. The steering lock and throttle remain fairly constant throughout the short corner, after which full 
throttle is applied and steering lock reduced. Incidentally, the real data shows serious power-on oversteer 
on the exit of this slow corner! 
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Silverstone conclusions 
 
Having considered the output of the model, we can draw the following conclusions: 
 

• The model represents a superhuman driver who can extract the maximum grip from the tyres 
at any point. A good target to aim for, but perhaps not a driving technique the club racer 
playing the percentages game would want to emulate! 
 

• The model appears to be affected to some greater or lesser degree by artefacts on the data 
which describes the path of the car, although these are not immediately visible on the map 
data. Perhaps a good map would be one from a very smooth lap – perhaps not the lap with the 
quickest time, but one where the optimum line is taken in the smoothest way. 
 

• The model appears to work! Of course, we have to remember that many important factors are 
not modelled – such as suspension and tyre behaviour, weight transfer and the acceleration 
and deceleration of the rotating masses such as wheel/brake disc/driveshaft assemblies. 

 
 

Scenarios 
 
Mass, engine power, shift time. 
 
 
 

 

Page 27 of 27 



Wings, downforce and drag 
 
Now we have created a model that appears to be producing useful results, we can start to consider what 
benefit might be obtained by adding some downforce producing devices to the car. Typically this will be in 
the form of wings, but other aerodynamic devices such as splitters, spoilers, underfloor tunnels and 
diffusers could be considered. 
 
We can consider again the forces in a 160m radius corner introduced earlier, with and without a wing of 
area 0.4m2 being added to the car. 
 
The downforce generated by a wing is dependent upon the plan area of the wing and the coefficient of lift 
(negative lift in our case): 
 
 FL = CL x ½ρv2 x A 
 
This can be added to the normal force as a result of the mass of the car (mg) in the limiting friction 
equation: 
 

F = µR 
   = µmg + ½µρv2A  

 
As we would expect, the limiting friction will increase with the square of speed. It can be seen from the 
diagram below that the maximum corner speed will thus increase, in the case shown by about 5mph for the 
0.4m2 wing. 

Forces in 160m radius corner, with and without wings
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14000.0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
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N

drag W
centripetal
uR NW
combined
engine
uR W
drag NW

5mph 

Max corner 
speed with 
0.4m2 wing, 

Max corner 
speed without 
wings ~10

 
The wing will add extra drag to the car, again this is calculated using the coefficient of drag and the plan 
area of the wing: 
 
 Fd = Cd x ½ρv2 x A 
 
Although this is relatively small compared with the drag due to the frontal area, we will nevertheless 
consider the drag associated with the wing in our calculations. As a side point, in Competition Car 
Downforce, it is suggested that the drag from the front wing can be ignored. 
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Maximum corner speed with wings 
 
We can now attempt to calculate the maximum corner speed (the crossover point in the previous diagram). 
This equation for the wingless case was previously used: 
 

(µR) 2 = v4((m2/r2) + (1/4ρ2A2CD
 2)) 

 = v4((m/r) 2 + (1/2ρACD)2) 
 
If we refer to frontal area as AF (previously A) and wing area as AW, the wing coefficient of drag as CWD 
and the car’s coefficient of drag as CFD (previously CD) then we can add in the wing drag component: 
 
 FD = 1/2ρAF CFDv2 + 1/2ρAW CWDv2 
  = 1/2ρ(AF CFD + AW CWD)v2 
 
 
 (µR) 2 = v4((m/r) 2 + (1/2ρ(AF CFD + AW CWD))2) 
 
The normal force at velocity v, where the wing coefficient of lift is CL will be: 
 
 R  = mg + 1/2ρAWCLv2 

 
So now we can attempt to solve for v, by first getting rid of the square on the left hand side: 
 
 µR = v2 √((m/r) 2 + (1/2ρ(AF CFD + AW CWD))2) 
 
 µmg + 1/2µρAWCLv2 = v2 √((m/r) 2 + (1/2ρ(AF CFD + AW CWD))2) 
 

µmg  = v2 √((m/r) 2 + (1/2ρ(AF CFD + AW CWD))2)  - 1/2µρAWCLv2 
 
 
dividing both sides by v2 
 
 µmg/v2  =  √((m/r) 2 + (1/2ρ(AF CFD + AW CWD))2)  - 1/2µρAWCL 
 
 
    µmg 
 v2  = 

        √((m/r) 2 + (1/2ρ(AF CFD + AW CWD))2)  - 1/2µρAWCL 
 
 
     

     √  √((m/r) 2 + (1/2ρ(AF CFD + AW CWD))2)  - 1/2µρAWCL 

µmg v  =  

 
This certainly is an equation that could do with some tidying up, but we could use it in its current form in 
the model. It is however hard to relate it back to the equation used before wings are applied, or even when 
the wing area is zero! 
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Straight line speed, with wings 
 
The equation without wings was as follows, when re-written to use our new terminology: 
 
  v = √ u2 + 2s((P/u) – ½ρu2AFCFD)/m 
 
Adding the additional drag component: 
 
  v = √ u2 + 2s((P/u) – ½ρu2(AFCFD + AWCWD)/m 
 
This will make the car slower in straight line, as the wing area or coefficient of drag increases. 
 

Maximum braking force, with wings 
The wings should also increase the braking capacity of the car since the normal force on the tyres and thus 
the maximum limiting frictional force is being increased. 
 
For the model, we calculate the maximum braking force to be applied throughout the sector. Clearly as 
speed decreases, the normal force associated with the wings will also decrease, however note that we 
calculate the force available only at the end of the sector, so the braking effort will be slightly 
underestimated. 
 
The equation for maximum braking force without wings consists of a portion related to the force available 
after the cornering has be accounted for, and a pure drag portion. It was as follows, when re-written to use 
our new terminology: 
 
 
 FS  = ½ρv2AFCFD  + √ µ2R2 – m2v4/r2 
 
Introducing the additional drag of the wing: 
 
 FS  = ½ρv2(AFCFD + AWCWD)  + √ µ2R2 – m2v4/r2 
 
Substituting our new value for the normal force R, which now includes the downforce produced by the 
wing, we get our revised equation: 
 
 FS  = ½ρv2(AFCFD + AWCWD)  + √ µ2(mg + ½ρv2AWCL)2 – m2v4/r2 
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